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The significance of low frequent terms in text classification (TC) was always debatable. These
terms were often accused of adding noise to the TC process. Nevertheless, some recent studies
have proved that they are very helpful in improving the performance of text classifiers. This paper
shows the significance of low frequent terms in enhancing the performance of English TC, in
terms of precision, recall, F-measure, and accuracy. Six well-known TC algorithms are tested on
the benchmark Reuters Data Set, once keeping low frequent terms and another time discarding
them. These algorithms are the support vector machines, logistic regression, k-nearest neighbor,
naive bayes, the radial basis function networks, and polynomial networks. All the experiments in
this research have shown a superior performance of TC when the low frequent terms are used in
classification. C© 2014 Wiley Periodicals, Inc.

1. INTRODUCTION

Text classification (TC) is the ability of a computer system to assign a new—
unseen before—document to one or more predefined classes or topics, like sports,
news, and religion, etc. The need for accurate automatic TC systems increases every
day, along with the continuous huge increment of the amounts of online textual
information becoming available every day.

Term selection is a common routine in TC; it involves selecting part of the
document terms as discriminating keywords to be used in building a classifier rather
than using all the document terms for this task. Term selection aims mainly to reduce
the size of the term set used in TC; this will result in more efficient text classifiers
regarding computing resources. Furthermore, term selection was considered a pro-
cess that aids in removing noisy data, and hence enhances classification accuracy to
a great extent.

The significance of low frequent terms in TC performance was always de-
batable. A recent study has proved that keeping low frequent terms can enhance
polynomial networks (PN)-based TC of the Reuters Data Set to a great extent,
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390 AL-TAHRAWI

regardless of the term-weighting scheme adopted or the term-reduction method
used.1 The enhancement on the accuracy recorded when keeping the low frequent
terms in this research was great; it reached 17% in some experiments. Another re-
cent study has shown the significance of low frequent terms in patent classification;2

keeping low frequent terms in their experiments has shown to outperform the set
of high frequent terms in classifying patent documents. Other studies in the litera-
ture have also concluded that low frequent terms are very helpful in improving the
accuracy of TC.3–6

The research conducted in Ref. 1 is extended here to investigate the significance
of low frequent terms in TC using other state-of-the-art TC algorithms. Furthermore,
additional performance measures are used here to investigate the significance of
low frequent terms in TC. Besides PNs, five of the top performers in English
TC algorithms are selected: support vector machines (SVM), logistic regression
(LR), k-nearest neighbor (kNN), naive bayes (NB), and the radial basis function
(RBF) networks. Each of the six algorithms is used in this research to classify the
Reuters Data Set, once keeping low frequent terms as a part of the terms used for
building the classifier, and another time discarding them. All the experiments using
all algorithms have proved that keeping low frequent terms has achieved a superior
TC performance of the Reuters Data Set as compared with removing these terms,
in terms of classification accuracy, precision, recall, and F-measure.

The paper is organized as follows: Section 2 presents an overview of the text
classifiers used in this research, while Section 3 is devoted to explain, in brief, the
data set used and the processing steps performed on the data set. The performance
evaluation measures used in the experiments are explained in Section 4, and Section 5
of the paper presents a summary of the results reached in the experiments conducted
in this research. Analysis of these results takes place in Section 6, and finally,
conclusions and intended future work are presented in Section 7.

2. TC ALGORITHMS

Six of the top performers in TC are used in this research to investigate the
significance of low frequent terms in TC: SVMs, LR, kNN, NB, the RBF networks,
and PNs. Details of each of these classification algorithms are presented next.

2.1 SVMs

SVMs were introduced by Vapnik.7–9 Empirical studies have shown that SVM
is the state-of-the-art technique among other well-known TC algorithms.10 More-
over, SVMs are fully automatic; no manual parameter tuning is needed. SVMs are
based on the Structural Risk Minimization principle9 from computational learning
theory. The idea of structural risk minimization is to find a hypothesis h for which
the lowest true error can be guaranteed. The true error of h is the probability that h
will make an error on a random unseen test example. An upper bound can be used
to connect the true error of a hypothesis h with the error of h on the training set and
the complexity of H (measured by Vapnik–Chervonenkis, i.e., VC dimension); the
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LOW FREQUENT TERMS IN TEXT CLASSIFICATION 391

hypothesis space containing h.9 SVMs find the hypothesis h which approximately
minimizes this bound on the true error by controlling the VC dimension of H effi-
ciently. For details of SVMs computations, and how to apply them in TC, the reader
can refer to Refs. 10 and 11.

2.2 LR

LR has been a well-known statistical model suitable for probabilistic classifi-
cation. Recently, logistic regression has been studied in statistical machine learning
community.12–15 It is a high-performance classifier that can be efficiently trained
with a large number of labeled examples. Previous studies have shown that the lo-
gistic regression model is able to achieve similar performance of TC as SVMs.12, 15, 16

Logistic regression can be applied to both real and binary data. It outputs the poste-
rior probabilities for test examples that can be conveniently processed and engaged
in other systems. In theory, given a test example x, logistic regression models the
conditional probability of assigning a class label y to the example by13

P (y|x) = 1

1 + exp
(−yαT x

) . (1)

where α is the model parameter.

2.3 kNN

kNN is a well-known statistical approach that has been applied to TC since the
early stages of research. It is one of the top-performing methods on Reuters.12, 17

The algorithm is very simple; given a test document to classify, the classifier finds
the kNNs of the test document, and majority voting among the neighbors is used
to decide the category of the test document. Similarity is measured by the cosine
between the vectors representing the documents. If a category is shared by more
than one of the k neighbors, then the sum of the similarity scores of these neighbors
is the weight of that shared category.

2.4 NB

NB is a well-known and highly practical probabilistic classifier that has been
widely used in TC. It uses the joint probabilities of words and categories to estimate
the probabilities of categories, given a test document. The naive part in this algorithm
is the assumption of word independence: the probability of a word, given a category,
is assumed to be independent from the conditional probabilities of other words given
in that category; that is, it does not use word combinations as predictors. This naı̈ve
assumption results in saving the computation time to a great extent. Several studies
show that NB performs surprisingly well in TC, despite this wrong independence
assumption.12, 18 Zheng et al.19, Lewis and Ringuette20, and Tahrawi and Abu Zitar12

found term selection to be very useful for Reuters when classified with NB. In TC,
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the probability of a class C, given a document dj is calculated by Bayes’ theorem as
follows:21

P (C|dj ) = P (dj |C) P (C)

P (dj )
(2)

= P (dj |C) P (C)

P (dj |C) P (C) + P
(
dj |C̄)

P
(
C̄

) (3)

2.5 RBF Networks

RBF network is an artificial neural network model motivated by the locally
tuned response observed in biological neurons.22 RBF networks were used early
for interpolation,23, 24 probability density estimation,25–27 and approximations of
smooth multivariate functions.28 They have also been applied with success to
classification.12, 29–32 The RBF network has a feed-forward structure consisting of a
single hidden layer of a number of locally tuned units that are fully interconnected to
an output layer of a number of linear units. All hidden units simultaneously receive
the input vector. Hidden units outputs are calculated as the distance between the
input vector and the weight vector of the hidden unit multiplied by a bias b. The bias
allows the sensitivity of the radial basis unit to be adjusted. It determines the width
of the area in the input space to which each hidden unit responds. A distinguishing
feature of a RBF network is its adaptive nature, which generally allows it to utilize
a relatively smaller number of locally tuned units.

2.6 PNs

PN classifiers have been known in the literature for many years.33 They
have been recently used in many areas like speaker verification and sign-language
recognition.34–38 More recently, PNs have proved to be competitive to the top per-
formers in the field of English TC of the two benchmark data sets in TC: Reuters
and 20Newsgroups.1, 12 More importantly, this performance was achieved in one
shot training (non-iteratively) and using just 0.25%–0.5% of the corpora terms.1, 12

The PN model adopted in this research consists of two layers. The first layer
(the input layer) forms the monomial basis terms of the input vector x (x1, x2, . . . ,
xN), such as 1, x1, x2, x1

2, and so on, where N is the number of terms of x. A second
layer then linearly combines the output of the first layer, that is, the data are first
expanded into a high dimensional space in the first layer and then linearly separated
using the second layer. The basic embodiment of a Kth-order PN consists of several
parts. The N terms of one observation x(x1, x2, . . . , xN) are used to form a basis
function p(x); one p(x) is formed for each observation. The elements of p(x) for a
polynomial of degree K are monomials of the form35

N∏

j=1

x
kj

j , where kj ≥ 0 and 0 ≤
N∑

j=1

kj ≤ K (4)
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LOW FREQUENT TERMS IN TEXT CLASSIFICATION 393

The second layer of the PN linearly combines all inputs to produce weights of
classes. The whole class is represented by one weight, which is computed during
the training phase. Details of using PNs in TC are explained next. Polynomials of
degree 2 were used in this research.

2.6.1 The Training Phase of PN Classifiers

A PN is trained to approximate an ideal output using mean squared error
as the objective criterion. The polynomial expansion of the ith-class term vectors
(documents) is denoted by12, 34

Mi = [p(xi, 1) p(xi, 2)p(xi, 3) . . . p(xi, Ni)]
t (5)

where Ni is the number of training term vectors for class i, and p(xi,m) is the basis
function of the mth term vector for class i. After forming Mi for each class i of the nc
training classes, a global matrix M is obtained for the nc classes, by concatenating
the individual Mi’s computed for each class12, 35

M = [M1 M2 M3 Mnc]t (6)

The training problem then reduces to finding an optimum set of weights w (one
weight for each class) that minimizes the distance between the ideal outputs and a
linear combination of the polynomial expansion of the training data such that12, 35

w
opt
i = arg min

w

‖Mw − oi‖2 (7)

where oi is the ideal output. A class model w
opt
i can be obtained in one shot by

applying the normal equations method, which is as follows:12, 35

Mt M w
opt
i = Mt oi (8)

2.6.2 Recognition Phase of PN Classifiers

Classification of a new unseen document consists of two parts: identification
and verification. Identification involves finding the best matching class of an unseen
document, given the term vector of this document. In the verification phase, the claim
made in the identification phase is either accepted or rejected. The identification
phase proceeds as follows in the PN algorithm: the term vector x of the unseen
document is expanded into its polynomial terms p(x) in a manner similar to what
was done with the training inputs in the training phase. Then, the new unseen
document is assigned to the class c such that12, 35

c = arg max w
opt
i · p(x) for i = 1, 2, . . . , nc (9)
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394 AL-TAHRAWI

Table I. Distribution of documents and terms among R8 classes.

Class
number Class

Number of train
documents

Number of test
documents

Total number of
documents Number of terms

1 Acq 1,596 696 2,292 7,323
2 Crude 253 121 374 2,751
3 Earn 2,840 1,083 3,923 7,188
4 Grain 41 10 51 1,038
5 Interest 190 81 271 1,448
6 Money–fx 206 87 293 1,992
7 Ship 108 36 144 1,676
8 Trade 251 75 326 2,652

Total 5,485 2,189 7,674 13,891 (after removing
duplicates among classes)

3. DATA SET

The Reuters-21578 benchmark subset suitable for single-label TC—R839—
was used in this research. The whole processing steps performed on the data sets
can be summarized as follows:

1. Only letters, hyphens ‘-’, and underscores ‘_’ are kept; any other character is eliminated.
2. All letters are converted to lowercase.
3. Tabs, new lines, and RETURN characters are replaced by single spaces.
4. The Porter stemmer40 was used, with the following modification: an ignore list of more

than 1000 stop words is defined and used to reduce the number of terms in the data set.
5. Then, any remaining word consisting of just one character is removed.

The distribution of documents and terms, per class, for R8 is shown in Table I.

3.1 Term Selection

Chi Square (χ2) was used to compute the discriminating power of each term
in the corpus in this research. Chi square has shown to yield good results in classifi-
cation, compared with other term-selection methods.1, 12, 41–44 The chi-square score
measures the correlation dependency between the term and its containing class. The
higher this score is, the more discriminating the term is for that class. The chi-square
measure is computed for each term t in each class ci as follows:45

χ2(t, ci) = N × (AD − CB)2

(A + C) × (B + D) × (A + B) × (C + D)
(10)

where:

1. N is the total number of training documents in the data set,
2. A is the number of documents belonging to class ci and containing t,
3. B is the number of documents belonging to class ci but not containing t,
4. C is the number of documents not belonging to class ci but containing t, and
5. D is the number of documents neither belonging to class ci nor containing t.
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LOW FREQUENT TERMS IN TEXT CLASSIFICATION 395

The chi square measure can be globalized for terms that appear in more than
one class (usually with different chi-square measures in different classes) in one
score by choosing the maximum or the average score. Finally, the reduced term set
is chosen from the topmost chi-square measure terms, ignoring terms with zero or
small measures. Different term-reduction criteria can be used, as explained in the
next section.

3.2 Term-Reduction Methods

Three different methods were used to reduce the resulting set of terms. Details
of these methods are explained in the following subsections. Each of these methods
was tried once keeping the low frequent terms in each document, and another time
discarding them. Low frequent terms are the terms that are selected for building the
classifier and occur in a training or testing document with a frequency of three or
less. This aims mainly to investigate the role of low frequent terms in enhancing
document-classification performance. Detailed results of using these reduced term
sets in classification, as well as an analysis of these results, will follow in the
subsequent sections.

3.2.1 Selecting the Topmost Terms from the Corpus as a Whole

First, the topmost 100 chi square measure terms from the corpus as a whole
(0.72% of the corpus terms) were selected. Another reduced term set is formed
by selecting the topmost 70 chi-square measure terms from the corpus as a whole
(0.5% of the corpus terms). This term set was created to compare the classification
performance using the same reduction method (the corpus topmost terms) but with
a smaller number of terms.

3.2.2 Selecting an Equal Number of Terms from Each Class in the Corpus

An equal number of terms is chosen from each class as a second term-reduction
strategy. This aims to overcome the problem of the variation in the number of terms
chosen from each class to build the classifier, when the previous method is adopted.
The topmost 13 chi-square measure terms were selected from each class, and these
104 terms were reduced to 96 terms (0.7% of the corpus terms) after the elimination
of duplicates.

3.2.3 Selecting an Equal Percentage of the Topmost Chi-Square Measure
Terms from Each Class

The last term-reduction strategy was to select an equal percentage of the top-
most chi-square measure terms from each class (0.5% of each class). The term set
had 131 terms and these 131 terms were reduced to 108 terms after the elimination
of duplicates.
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396 AL-TAHRAWI

3.3 Term Weighting

In TC, each document is represented by a vector of term weights, which
represent the strength or significance of these terms in this document. These weights
are usually numbers that fall in the [0,1] interval. Several term-weighting schemes
were used in the literature of TC, such as document frequency, term frequency,
normalized tf.idf, binary weights, information gain, and weighted inverse document
frequency. Normalized document frequency was used for term weighting in all
classification algorithms experimented in this research, except NB, which uses
binary weights. Normalized document frequency was selected, because previous
researches on the same data set1, 12 have shown this term-weighting scheme to
record the best performance on this data set.

4. PERFORMANCE EVALUATION

All classifiers in this research are evaluated by measuring their accuracy, micro-
and macro-averaged precision, recall, and F1 measure.

4.1 Accuracy

Accuracy of a class ci, Acci, is computed as follows:

Acci = T Pi

T Pi + FNi + FPi

. (11)

where

1. TPi: true positives with respect to a category ci; the number of documents correctly
claimed by the classifier as belonging to category ci.

2. FPi: false positives with respect to ci; the number of documents incorrectly claimed by
the classifier as belonging to ci.

3. FNi: false negatives with respect to ci; the number of documents incorrectly claimed by
the classifier as not belonging to ci.

4.2 Precision

Precision refers to the proportion of test files classified into a class that really
belong to that class. Precision of a class ci, Pi can be defined as follows:46

Pi = T Pi

T Pi + FPi

. (12)

4.3 Recall

Recall is the proportion of test files belonging to a class and are claimed by the
classifier as belonging to that class. Recall of a class ci (Ri) can be computed using
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LOW FREQUENT TERMS IN TEXT CLASSIFICATION 397

Table II. Detailed results when removing low frequent terms.

Micro-averaged results Macro-averaged results

Algorithm
Number
of terms Accuracy Precision Recall F-measure Precision Recall F-measure

LR 70 76.5190 76.5190 76.5190 76.5190 84.4685 67.4734 73.252
96 81.8 81.7725 81.7725 81.7725 82.8077 69.9821 74.6656

100 81.8182 81.8182 81.8182 81.8182 82.8731 69.3687 74.1667
108 84.011 84.011 84.011 84.011 84.3793 72.0425 76.5068

KNN 70 83.8739 91.2746 91.2746 91.2746 87.3481 83.5973 85.1837
96 83.5998 92.2796 92.2796 92.2796 91.9785 79.3759 84.1370

100 84.2851 92.2339 92.2339 92.2339 92.8585 79.3249 84.7314
108 83.5541 83.5541 83.5541 83.5541 89.4295 68.9951 75.9272

RBF 70 61.6263 63.1850 61.6263 62.3959 53.0966 46.0355 42.2997
96 68.3874 70.2158 68.3874 69.2895 46.7859 38.1385 38.1091

100 68.3417 70.6660 68.3417 69.4844 46.9411 41.2100 40.0376
108 67.9762 70.6553 67.9762 69.2899 49.2058 42.7290 41.2102

NB 70 83.5541 83.5541 83.5541 83.5541 84.5835 69.5958 75.0106
96 84.2394 84.2394 84.2394 84.2394 84.2359 69.6763 74.9712

100 84.1937 84.1937 84.1937 84.1937 82.1494 69.4310 73.8895
108 83.8282 83.8282 83.8282 83.8282 85.5667 68.5771 74.8927

SVM 70 76.5190 76.519 76.519 76.519 87.2895 67.098 73.362
96 82.0923 82.0923 82.0923 82.0923 87.4182 70.4238 76.5063

100 82.5948 82.5948 82.5948 82.5948 88.6216 70.7407 77.0266
108 84.6505 84.6505 84.6505 84.6505 90.2484 72.0904 78.7368

PN 70 76.519 76.5190 76.5190 76.5190 84.43 67.18 72.98
96 80.9959 80.9959 80.9959 80.9959 80.6931 66.9159 72.0611

100 81.0873 81.0873 81.0873 81.0873 81.7901 68.1491 73.0262
108 82.9146 82.9146 82.9146 82.9146 86.0144 69.4407 75.6344

the following formula:46

Ri = T Pi

T Pi + FNi

. (13)

4.4 F1 measure

The F1 measure, introduced by Rijsbergen47 is the harmonic average of both
precision and recall. F1 is computed as follows:46

F1 = 2 ∗ Recall ∗ Precision

Recall + Precision
(14)

= 2 ∗ T Pi

2 ∗ T Pi + FNi + FPi

(15)

Individual results of categories can be either micro-averaged or macro-averaged
to give an idea of the classification performance on the corpus as a whole. The six
classifiers are evaluated using accuracy, precision, recall, and F1. Micro- and macro-
averaged results are presented to give a clear idea of the classifiers performance. For
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Table III. Detailed results when keeping low frequent terms.

Micro-averaged results Macro-averaged results

Algorithm
Number
of terms Accuracy Precision Recall F-measure Precision Recall F-measure

LR 70 93.2846 93.2846 93.2846 93.2846 88.4652 86.7366 87.2397
96 94.4267 94.4267 94.4267 94.4267 91.4317 88.8195 89.8624

100 94.1983 94.1983 94.1983 94.1983 88.8182 86.6119 87.3856
108 95.0662 95.0662 95.0662 95.0662 91.2302 89.2222 89.9377

KNN 70 92.73641 92.73641 92.73641 92.73641 92.49809 83.67196 87.14097
96 92.28 92.27958 92.27958 92.27958 90.78793 80.2498 84.45063

100 92.64504 92.64504 92.64504 92.64504 91.67699 82.03712 86.15902
108 92.73641 92.73641 92.73641 92.73641 91.2589 83.19586 86.53073

RBF 70 76.42841 77.41331 75.46825 76.42841 51.54494 51.88161 47.22399
96 77.38 78.36066 76.42759 77.38205 51.3376 54.35716 48.46213

100 76.63 77.63713 75.65098 76.63119 52.62719 57.04643 49.31039
108 77.94 79.96156 76.01645 77.93911 55.44916 56.82075 51.65044

NB 70 92.3253 92.3253 92.3253 92.3253 84.3784 84.4005 84.0656
96 92.2796 92.2796 92.2796 92.2796 85.1718 82.7446 83.7172

100 91.7314 91.7314 91.7314 91.7314 83.8816 81.2529 82.3956
108 92.65 92.645 92.645 92.65 85.5184 82.4948 83.8347

SVM 70 93.1932 93.19324 93.19324 93.19324 92.56581 82.71749 86.40631
96 93.6958 93.69575 93.69575 93.69575 91.73871 82.70901 86.21263

100 94.11 94.11 94.11 94.11 92.16376 83.82417 87.1019
108 95.3403 95.34034 95.34034 95.34034 93.38495 87.19103 89.80104

PN 70 92.4166 92.4166 92.4166 92.4166 86.5387 85.416 85.4169
96 91.5943 91.5943 91.5943 91.5943 85.5336 83.1539 83.9597

100 91.7314 91.7314 91.7314 91.7314 86.8798 82.5371 84.4752
108 93.6044 93.6044 93.6044 93.6044 90.0878 87.8713 88.8039

detailed formulae for computing micro- and macro-averaged results, the reader can
refer to Ref. 46.

5. EXPERIMENTS AND RESULTS

Each of the six classification algorithms was experimented using the four
reduced term sets once keeping low frequent terms and another time discarding
them. Various parameters settings were tested for SVM, kNN, and RBF networks;
the best results are presented here. Experiments results are summarized in Tables II
and III. Figures 1–18 compare each algorithm performance when keeping low
frequent terms versus removing them.

6. ANALYSIS OF RESULTS

It is apparently clear from all the experiments of this research that keeping
low frequent terms has achieved superior precision, recall, F-measure, and accuracy
compared with the results of the same experiment settings with the low frequent
terms being removed. This is valid for all the classification algorithms tested in this
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LOW FREQUENT TERMS IN TEXT CLASSIFICATION 399

Figure 1. MicroAverage F1 of kNN: keeping vs removing low frequent terms

Figure 2. MacroAverage F1 of kNN: keeping vs removing low frequent terms

Figure 3. Accuracy of kNN: keeping vs removing low frequent terms
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Figure 4. MicroAverage F1 of RBF: keeping vs removing low frequent terms

Figure 5. MacroAverage F1 of RBF: keeping vs removing low frequent terms

Figure 6. Accuracy of RBF: keeping vs removing low frequent terms
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Figure 7. MicroAverage F1 of NB: keeping vs removing low frequent terms

Figure 8. MacroAverage F1 of NB: keeping vs removing low frequent terms

Figure 9. Accuracy of NB: keeping vs removing low frequent terms
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Figure 10. MicroAverage F1 of SVM: keeping vs removing low frequent terms

Figure 11. MacroAverage F1 of SVM: keeping vs removing low frequent terms

Figure 12. Accuracy of SVM: keeping vs removing low frequent terms

research regardless of the term-reduction method used. The enhancement on the
accuracy recorded when keeping the low frequent terms is great; it lies between
16% and 17% for PN, SVM, and LR, and lies between 9% and 11% for NB, RBF,
and kNN.

It is also clear that the 108-terms–reduced term set has the optimum perfor-
mance among the other term sets. This term set was constructed by selecting an
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Figure 13. MicroAverage F1 of PN: keeping vs removing low frequent terms

Figure 14. MacroAverage F1 of PN: keeping vs removing low frequent terms

Figure 15. Accuracy of PN: keeping vs removing low frequent terms

equal percentage of the topmost terms in each class in the corpus. In fact, this com-
plies with the conclusions in Refs. 1 and 12, that found that using equal percentage
of class terms resulted in the best classification performance in several classifiers,
compared with using equal number of terms from each class, or just choosing a
specified number of the corpus topmost terms, as this guarantees that all classes
participate evenly in building the classifier.
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Figure 16. MicroAverage F1 of LR: keeping vs removing low frequent terms

Figure 17. MacroAverage F1 of LR: keeping vs removing low frequent terms

Figure 18. Accuracy of LR: keeping vs removing low frequent terms

7. CONCLUSIONS

In this paper, the significance of low frequent terms in TC was investigated. Six
famous TC algorithms were tested. Each algorithm was tested using four reduced
term sets that were selected using different reduction methods. On the basis of the re-
sults of the experiments conducted in this research, we strongly recommend keeping
low frequent terms (after applying efficient term selection and reduction criteria)
in classifying the Reuters Data Set, due to their remarkable effect in enhancing
the accuracy, precision, recall, and F-measure of text classifiers. The intended near
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LOW FREQUENT TERMS IN TEXT CLASSIFICATION 405

future work is to extend the work conducted in this research to study the effect of
keeping low frequent terms on classifying other benchmark data sets.
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